Notice
Recent Posts
Link
Tags
- SPP-Net
- LeNet 구현
- deep learning
- object detection
- Weight initialization
- 딥러닝
- overfeat
- image classification
- Convolution 종류
- Optimizer
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Archives
- Today
- Total
목록Lecun Initialization (1)
I'm Lim
Lecun Initialization
Lecun Initialization Random Initialization은 극단적인 경우에 모든 가중치 값들이 1이 되거나 -1이 될 수 있다. 이것을 방지하면 되지 않을까라는 생각에서 나온 것이 Lecun Initialization이다. 즉, $Z_i = \Sigma {X_j W_j}$에서 $Z_i$의 범위를 -1에서 1로 만들어 줄 수 있다면 Saturation 영역에 빠지지 않기 때문에 Random initialization의 문제를 해결할 수 있을 것이라고 예상한 것이다. $Z_i = \Sigma {X_j W_j}$에서 $Z_i$의 범위를 -1에서 1로 만들기 위해서는 가중치를 i 레이어의 노드의 개수를 나눠주면 된다. 이 i 레이어의 노드의 개수를 $fan_{in}$라 한다. 이 말을 정리하..
Deep Learning/Weight Initialization
2022. 10. 23. 16:32